Vulnerability of LLMs to Vertically Aligned Text Manipulations

ACL ARR 2025 February Submission986 Authors

12 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Vertical text input is commonly encountered in various real-world applications, such as mathematical computations and word-based Sudoku puzzles. While current large language models (LLMs) have excelled in natural language tasks, they remain vulnerable to variations in text formatting.Recent research demonstrates that modifying input formats, such as vertically aligning words for encoder-based models, can substantially lower accuracy in text classification tasks. While easily understood by humans, these inputs can significantly mislead models, posing a potential risk of bypassing detection in real-world scenarios involving harmful or sensitive information. With the expanding application of LLMs, a crucial question arises: Do decoder-based LLMs exhibit similar vulnerabilities to vertically formatted text input? In this paper, we investigate the impact of vertical text input on the performance of various LLMs across multiple text classification datasets and analyze the underlying causes. Our findings are as follows: (i) Vertical text input significantly degrades the accuracy of LLMs in text classification tasks. (ii) Chain of Thought (CoT) reasoning does not help LLMs recognize vertical input or mitigate its vulnerability, but \textit{few-shot learning} with careful analysis does. (iii) We explore the underlying cause of the vulnerability by analyzing the inherent issues in tokenization and attention matrices.
Paper Type: Long
Research Area: NLP Applications
Research Area Keywords: vulnerability, vertical
Languages Studied: English
Submission Number: 986
Loading