On Convergence of Average-Reward Off-Policy Control Algorithms in Weakly-Communicating MDPsDownload PDF


22 Sept 2022, 12:33 (modified: 26 Oct 2022, 14:03)ICLR 2023 Conference Blind SubmissionReaders: Everyone
Keywords: Reinforcement Learning, Average-Reward, Off-Policy, Convergence
TL;DR: Showing average-reward off-policy control algorithms converge in weakly-communicating MDPs
Abstract: We show two average-reward off-policy control algorithms, Differential Q Learning (Wan, Naik, \& Sutton 2021a) and RVI Q Learning (Abounadi Bertsekas \& Borkar 2001), converge in weakly-communicating MDPs. Weakly-communicating MDPs are the most general class of MDPs that a learning algorithm with a single stream of experience can guarantee obtaining a policy achieving optimal reward rate. The original convergence proofs of the two algorithms require that all optimal policies induce unichains, which is not necessarily true for weakly-communicating MDPs. To the best of our knowledge, our results are the first showing average-reward off-policy control algorithms converge in weakly-communicating MDPs. As a direct extension, we show that average-reward options algorithms introduced by (Wan, Naik, \& Sutton 2021b) converge if the Semi-MDP induced by options is weakly-communicating.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
4 Replies