Keywords: hyperbolic; lorentz model
Abstract: Real-world data frequently exhibit latent hierarchical structures and long-tail distributions, which can be naturally represented by hyperbolic geometry. Although recent hyperbolic neural networks have demonstrated promising results, many existing architectures remain partially intrinsic, mixing Euclidean operations with hyperbolic ones or relying on extrinsic parameterizations. To address it, we propose the \emph{Intrinsic Lorentz Neural Network} (ILNN), a fully intrinsic hyperbolic architecture that conducts all computations within the Lorentz model. At its core, the network introduces a novel \emph{point-to-hyperplane} fully connected layer (FC), replacing traditional Euclidean affine logits with closed-form hyperbolic distances from features to learned Lorentz hyperplanes, thereby ensuring that the resulting geometric decision functions respect the inherent curvature.
Around this fundamental layer, we design intrinsic modules: GyroLBN, a Lorentz batch normalization that couples gyro-centering with gyro-scaling, consistently outperforming both LBN and GyroBN while reducing training time. We additionally proposed a gyro-additive bias for the FC output, a Lorentz patch-concatenation operator that aligns the expected log-radius across feature blocks via a digamma-based scale, and a Lorentz dropout layer.
Extensive experiments conducted on CIFAR-10/100 and two genomic benchmarks (TEB and GUE) illustrate that ILNN achieves state-of-the-art performance and computational cost among hyperbolic models and consistently surpasses strong Euclidean baselines.
Supplementary Material: pdf
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 142
Loading