AddressVLM: Cross-view Alignment Tuning for Image Address Localization using Large Vision-Language Models

ICLR 2025 Conference Submission2061 Authors

20 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Image Address Localization; Large Vision Language Model; Cross-view Alignment; Supervised Fine-tuning
Abstract: Large visual language models (LVLMs) have demonstrated impressive performance in coarse-grained geo-localization at the country or city level, but they struggle with fine-grained street-level localization within urban areas. In this paper, we explore integrating city-wide address localization capabilities into LVLMs, facilitating flexible address-related question answering using street-view images. A key challenge is that the street-view visual question-and-answer (VQA) data provides only microscopic visual cues, leading to subpar performance in fine-tuned models. To tackle this issue, we incorporate perspective-invariant satellite images as macro cues and propose cross-view alignment tuning including a satellite-view and street-view image grafting mechanism, along with an automatic alignment label generation mechanism. This helps build connections between street-view images through cross-view matching, thus enhancing LVLM's global understanding of street distribution. We name our proposed model AddressVLM consisting of two-stage training protocols: cross-view alignment tuning and address localization tuning. Furthermore, we have constructed two street-view VQA datasets based on image address localization datasets from Pittsburgh and San Francisco. Qualitative and quantitative evaluations demonstrate that AddressVLM outperforms counterpart LVLMs by over 9% and 12% in average address localization accuracy on the Pitts-VQA and SF-Base-VQA datasets, respectively.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2061
Loading