Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked ModelingDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024ICLR 2023 notable top 25%Readers: Everyone
Keywords: Self-Supervised Learning, Masked Autoencoding, Masked Pre-training, Masked Modeling, Convolutional Neural Networks
TL;DR: This paper presents a simple yet powerful framework to pre-train convolutional network (convnet) with Sparse masKed modeling.
Abstract: We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, randomly masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet’s hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method, called Sparse masKed modeling (SparK), is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). The improvements on object detection and instance segmentation are more significant (up to +3.5%), validating the strong transferability of features learned. We also find SparK’s favorable scaling behavior by observing more gains on larger networks. All of these findings support the promising future of generative pre-training on convnets. Both codes and pre-trained models have been released at
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
17 Replies