Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: molecular dynamics, force-guided bridge matching, graph neural network
Abstract: Molecular Dynamics (MD) is crucial in various fields such as materials science, chemistry, and pharmacology to name a few. Conventional MD software struggles with the balance between time cost and prediction accuracy, which restricts its wider application. Recently, data-driven approaches based on deep generative models have been devised for time-coarsened dynamics, which aim at learning dynamics of diverse molecular systems over a long timestep, enjoying both universality and efficiency. Nevertheless, most current methods are designed solely to learn from the data distribution regardless of the underlying Boltzmann distribution, and the physics priors such as energies and forces are constantly overlooked. In this work, we propose a conditional generative model called Force-guided Bridge Matching (FBM), which learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution. With the guidance of our delicately-designed intermediate force field, FBM leverages favourable physics priors into the generation process, giving rise to enhanced simulations. Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen systems.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4521
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview