Factored Policy Gradients: Leveraging Structure for Efficient Learning in MOMDPsDownload PDF

21 May 2021, 20:42 (edited 26 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: policy, gradients, baselines, reinforcement, learning, traffic, multi-agent
  • TL;DR: This paper unifies policy gradient, factorisation and control variate literature for improved scalability in large-scale control problems.
  • Abstract: Policy gradient methods can solve complex tasks but often fail when the dimensionality of the action-space or objective multiplicity grow very large. This occurs, in part, because the variance on score-based gradient estimators scales quadratically. In this paper, we address this problem through a factor baseline which exploits independence structure encoded in a novel action-target influence network. Factored policy gradients (FPGs), which follow, provide a common framework for analysing key state-of-the-art algorithms, are shown to generalise traditional policy gradients, and yield a principled way of incorporating prior knowledge of a problem domain's generative processes. We provide an analysis of the proposed estimator and identify the conditions under which variance is reduced. The algorithmic aspects of FPGs are discussed, including optimal policy factorisation, as characterised by minimum biclique coverings, and the implications for the bias variance trade-off of incorrectly specifying the network. Finally, we demonstrate the performance advantages of our algorithm on large-scale bandit and traffic intersection problems, providing a novel contribution to the latter in the form of a spatial approximation.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
9 Replies

Loading