Keywords: End-to-End Autonomous Driving, Autonomous Driving, 3D Reconstruction
Abstract: End-to-end autonomous driving (E2E-AD) has emerged as a promising paradigm that unifies perception, prediction, and planning into a holistic, data-driven framework. However, achieving robustness to varying camera viewpoints, a common real-world challenge due to diverse vehicle configurations, remains an open problem. In this work, we propose VR-Drive, a novel E2E-AD framework that addresses viewpoint generalization by jointly learning 3D scene reconstruction as an auxiliary task to enable planning-aware view synthesis. Unlike prior scene-specific synthesis approaches, VR-Drive adopts a feed-forward inference strategy that supports online training-time augmentation from sparse views without additional annotations. To further improve viewpoint consistency, we introduce a viewpoint-mixed memory bank that facilitates temporal interaction across multiple viewpoints and a viewpoint-consistent distillation strategy that transfers knowledge from original to synthesized views. Trained in a fully end-to-end manner, VR-Drive effectively mitigates synthesis-induced noise and improves planning under viewpoint shifts. In addition, we release a new benchmark dataset to evaluate E2E-AD performance under novel camera viewpoints, enabling comprehensive analysis. Our results demonstrate that VR-Drive is a scalable and robust solution for the real-world deployment of end-to-end autonomous driving systems.
Supplementary Material: zip
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 6059
Loading