Near-optimal Coresets for Robust ClusteringDownload PDF

Published: 01 Feb 2023, Last Modified: 24 Feb 2023ICLR 2023 notable top 5%Readers: Everyone
Keywords: clustering, outlier, robustness, coreset
Abstract: We consider robust clustering problems in $\mathbb{R}^d$, specifically $k$-clustering problems (e.g., $k$-Median and $k$-Means) with $m$ \emph{outliers}, where the cost for a given center set $C \subset \mathbb{R}^d$ aggregates the distances from $C$ to all but the furthest $m$ data points, instead of all points as in classical clustering. We focus on the $\epsilon$-coreset for robust clustering, a small proxy of the dataset that preserves the clustering cost within $\epsilon$-relative error for all center sets. Our main result is an $\epsilon$-coreset of size $O(m + \mathrm{poly}(k \epsilon^{-1}))$ that can be constructed in near-linear time. This significantly improves previous results, which either suffers an exponential dependence on $(m + k)$ [Feldman and Schulman, SODA'12], or has a weaker bi-criteria guarantee [Huang et al., FOCS'18]. Furthermore, we show this dependence in $m$ is nearly-optimal, and the fact that it is isolated from other factors may be crucial for dealing with large number of outliers. We construct our coresets by adapting to the outlier setting a recent framework [Braverman et al., FOCS'22] which was designed for capacity-constrained clustering, overcoming a new challenge that the participating terms in the cost, particularly the excluded $m$ outlier points, are dependent on the center set $C$. We validate our coresets on various datasets, and we observe a superior size-accuracy tradeoff compared with popular baselines including uniform sampling and sensitivity sampling. We also achieve a significant speedup of existing approximation algorithms for robust clustering using our coresets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
TL;DR: We obtain an \epsilon-coreset of near-optimal size for (k, z)-clustering (which includes k-median and k-means) with m outliers
Supplementary Material: zip
12 Replies