UniISP: A Unified ISP Framework for Both Human and Machine Vision

ICLR 2026 Conference Submission18059 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural ISP, RAW-domain Object Detection, RAW-to-sRGB Mappings
Abstract: Compared to RGB images, raw sensor data provides a richer representation of information, which is crucial for accurate recognition, particularly under challenging conditions such as low-light environments. The traditional Image Signal Processing (ISP) pipeline generates visually pleasing RGB images for human perception through a series of steps, but some of these operations may adversely impact the information integrity by introducing compression and loss. Furthermore, in computer vision tasks that directly utilize raw camera data, most existing methods integrate minimal ISP processing with downstream networks, yet the resulting images are often difficult to visualize or do not align with human aesthetic preferences. This paper proposes UniISP, a novel ISP framework designed to simultaneously meet the requirements of both human visual perception and computer vision applications. By incorporating a carefully designed Hybrid Attention Module (HAM) and employing supervised learning, the proposed method ensures that the generated images are visually appealing. Additionally, a Feature Adapter module is introduced to effectively propagate informative features from the ISP stage to subsequent downstream networks. Extensive experiments demonstrate that our approach achieves state-of-the-art performance across various scenarios and multiple datasets, proving its generalizability and effectiveness.
Supplementary Material: pdf
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 18059
Loading