Hyperbolic Genome Embeddings

ICLR 2025 Conference Submission13373 Authors

28 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: genomics, representation learning, hyperbolic geometry
TL;DR: A hyperbolic geometry-based approach for genomic sequence representation learning
Abstract: Current approaches to genomic sequence modeling often struggle to align the inductive biases of machine learning models with the evolutionarily-informed structure of biological systems. To this end, we formulate a novel application of hyperbolic CNNs that exploits this structure, enabling more expressive DNA sequence representations. Our strategy circumvents the need for explicit phylogenetic mapping while discerning key properties of sequences pertaining to core functional and regulatory behavior. Across 37 out of 43 genome interpretation benchmark datasets, our hyperbolic models outperform their Euclidean equivalents. Notably, our approach even surpasses state-of-the-art performance on seven GUE benchmark datasets, consistently outperforming many DNA language models while using 13-379$\times$ fewer parameters and avoiding pretraining. Our results include a novel benchmark dataset - the Transposable Elements Benchmark - which explores a significant but understudied component of the genome with deep evolutionary significance. We further motivate our work by constructing an empirical method for interpreting the hyperbolicity of dataset embeddings. Throughout these assessments, we find persistent evidence highlighting the potential of our hyperbolic framework as a robust paradigm for genome representation learning.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13373
Loading