Keywords: Self-Supervised Learning, Representation Learning, Unsupervised Learning
Abstract: In this paper, we investigate the characteristics that define a good representation or model. We propose that such a representation or model should possess universality, characterized by: (i) discriminability: performing well on training samples; (ii) generalization: performing well on unseen datasets; and (iii) transferability: performing well on unseen tasks with distribution shifts. Despite its importance, current self-supervised learning (SSL) methods lack explicit modeling of universality, and theoretical analysis remains underexplored. To address these issues, we aim to explore and incorporate universality into SSL. Specifically, we first revisit SSL from a task perspective and find that each mini-batch can be viewed as a multi-class classification task. We then propose that a universal SSL model should achieve: (i) learning universality by minimizing loss across all training samples, and (ii) evaluation universality by learning causally invariant representations that generalize well to unseen datasets and tasks. To quantify this, we introduce a
$\sigma$-measurement that assesses the gap between the performance of SSL model and optimal task-specific models. Furthermore, to model universality, we propose the GeSSL framework. It first learns task-specific models by minimizing SSL loss, then incorporates future updates to enhance discriminability, and finally integrates these models to learn from multiple mini-batch tasks. Theoretical and empirical evidence supports the effectiveness of GeSSL.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1319
Loading