Keywords: functional decomposition, polynomial decomposition, beam search, reinforcement learning, symbolic reasoning, transformer model
Abstract: Recent efforts have extended the capabilities of transformers in logical reasoning and symbolic computations. In this work, we investigate their capacity for non-linear latent pattern discovery in the context of functional decomposition, focusing on the challenging algebraic task of multivariate polynomial decomposition. This problem, with widespread applications in science and engineering, is proved to be NP-hard, and demands both precision and insight. Our contributions are threefold: First, we develop a synthetic data generation pipeline providing fine-grained control over problem complexity. Second, we train transformer models via supervised learning and evaluate them across four key dimensions involving scaling behavior and generalizability. Third, we propose Beam Grouped Relative Policy Optimization (BGRPO), a rank-aware reinforcement learning method suitable for hard algebraic problems. Finetuning with BGRPO improves accuracy while reducing beam width by up to half, resulting in approximately 75\% lower inference compute. Additionally, our model demonstrates competitive performance in polynomial simplification, outperforming Mathematica in various cases.
Submission Number: 41
Loading