FedCoT: Federated Chain-of-Thought Distillation for Large Language Models

ACL ARR 2025 May Submission836 Authors

15 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Large Language Models (LLMs) have emerged as a transformative force in artificial intelligence, demonstrating exceptional proficiency across various tasks. However, their deployment in resource-constrained environments and concerns over user data privacy pose significant challenges. In contrast, Small Language Models (SLMs) offer computational efficiency but often lag in performance. To address these issues, we propose FedCoT, a federated framework designed for the Chain-of-Thought (CoT) distillation of knowledge from LLMs to SLMs, while ensuring the preservation of clients' data privacy. FedCoT ensures secure and efficient knowledge transfer from an LLM on a high-powered server to an SLM on a resource-constrained client, while adhering to privacy requirements. Leveraging perturbed prompts and rationales generated through the CoT approach, the framework enhances the performance of the client's SLM without compromising user data privacy within a multi-task learning framework. We propose two privacy protection strategies: the Exponential Mechanism Strategy and the Adaptive Exponential Mechanism Strategy, which balance user prompt privacy and the usability of rationales. Empirical evaluation on various text generation tasks demonstrates the effectiveness of FedCoT in training task-specific SLMs with enhanced performance while prioritizing data privacy protection.
Paper Type: Long
Research Area: Language Modeling
Research Area Keywords: Federated LLM, COT, LLM, SLM
Contribution Types: Model analysis & interpretability, Approaches to low-resource settings, Approaches low compute settings-efficiency
Languages Studied: English
Keywords: Federated LLM, CoT, LLM, SLM
Submission Number: 836
Loading