Keywords: transformers, padding tokens, looped transformers, expressivity, circuit complexity, inference-time compute
TL;DR: We exactly characterize the expressive power of transformers with padding tokens as $\mathsf{TC}^0$, and we also characterize transformers with looping and padding.
Abstract: Chain of thought is a natural inference-time method for increasing the computational power of transformer-based large language models (LLMs), but comes at the cost of sequential decoding. Are there more efficient alternatives to expand a transformer's expressive power without adding parameters? We consider transformers with *padding* tokens as a form of parallelizable test-time compute. We show that averaging-hard-attention, masked-pre-norm transformers with polynomial padding recognize precisely the class $\mathsf{FO}$-uniform $\mathsf{TC}^0$ of extremely parallelizable problems. While the $\mathsf{TC}^0$ upper bound was known, proving a matching lower bound had been elusive. Further, our novel analysis reveals the precise expanded power of padded transformers when coupled with another form of inference-time compute, namely dynamically increasing depth via *looping*. Our core technical contribution is to show how padding helps bring the notions of *complete problems* and *reductions*, which have been a cornerstone of classical complexity theory, to the formal study of transformers. Armed with this new tool, we prove that padded transformers with $\mathrm{O}(\log^d n)$ looping on inputs of length $n$ recognize exactly the class $\mathsf{FO}$-uniform $\mathsf{TC}^d$ of moderately parallelizable problems. Thus, padding and looping together systematically expand transformers' expressive power: with polylogarithmic looping, polynomially padded transformers recognize precisely the class $\mathsf{FO}$-uniform $\mathsf{NC}$, the best that could be expected without losing parallelism (unless $\mathsf{NC} = \mathsf{P}$). Our results thus motivate further exploration of padding and looping as parallelizable alternatives to chain of thought for test-time compute.
Supplementary Material: zip
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 13073
Loading