Keywords: CLIP, text-based attack, data poisoning, backdoor attack, adversarial training
Abstract: The Contrastive Language-Image Pretraining (CLIP) model has significantly advanced vision-language modeling by aligning image-text pairs from large-scale web data through self-supervised contrastive learning. Yet, its reliance on uncurated Internet-sourced data exposes it to data poisoning and backdoor risks. While existing studies primarily investigate image-based attacks, the text modality, which is equally central to CLIP's training, remains underexplored. In this work, we introduce ToxicTextCLIP, a framework for generating high-quality adversarial texts that target CLIP during the pre-training phase. The framework addresses two key challenges: semantic misalignment caused by background inconsistency with the target class, and the scarcity of background-consistent texts. To this end, ToxicTextCLIP iteratively applies: 1) a background-aware selector that prioritizes texts with background content aligned to the target class, and 2) a background-driven augmenter that generates semantically coherent and diverse poisoned samples. Extensive experiments on classification and retrieval tasks show that ToxicTextCLIP achieves up to 95.83\% poisoning success and 98.68% backdoor Hit@1, while bypassing RoCLIP, CleanCLIP and SafeCLIP defenses. The source code can be accessed via https://github.com/xinyaocse/ToxicTextCLIP/.
Supplementary Material: zip
Primary Area: Social and economic aspects of machine learning (e.g., fairness, interpretability, human-AI interaction, privacy, safety, strategic behavior)
Submission Number: 16341
Loading