SparsyFed: Sparse Adaptive Federated Learning

Published: 22 Jan 2025, Last Modified: 31 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: dynamic sparse training, federated learning, cross device federated learning
Abstract: Sparse training is often adopted in cross-device federated learning (FL) environments where constrained devices collaboratively train a machine learning model on private data by exchanging pseudo-gradients across heterogeneous networks. Although sparse training methods can reduce communication overhead and computational burden in FL, they are often not used in practice for the following key reasons: (1) data heterogeneity makes it harder for clients to reach consensus on sparse models compared to dense ones, requiring longer training; (2) methods for obtaining sparse masks lack adaptivity to accommodate very heterogeneous data distributions, crucial in cross-device FL; and (3) additional hyperparameters are required, which are notably challenging to tune in FL. This paper presents SparsyFed, a practical federated sparse training method that critically addresses the problems above. Previous works have only solved one or two of these challenges at the expense of introducing new trade-offs, such as clients’ consensus on masks versus sparsity pattern adaptivity. We show that SparsyFed simultaneously (1) can produce 95% sparse models, with negligible degradation in accuracy, while only needing a single hyperparameter, (2) achieves a per-round weight regrowth 200 times smaller than previous methods, and (3) allows the sparse masks to adapt to highly heterogeneous data distributions and outperform all baselines under such conditions.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6538
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview