Single-Step Operator Learning for Conditioned Time-Series Diffusion Models

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Time series; Diffusion model
Abstract: Diffusion models have achieved significant success, yet their application to time series data, particularly with regard to efficient sampling, remains an active area of research. We describe an operator-learning approach for conditioned time-series diffusion models that gives efficient single-step generation by leveraging insights from the frequency-domain characteristics of both the time-series data and the diffusion process itself. The forward diffusion process induces a structured, frequency-dependent smoothing of the data's probability density function. However, this frequency smoothing is related (e.g., via likelihood function) to easily accessible frequency components of time-series data. This suggests that a module operating in the frequency space of the time-series can, potentially, more effectively learn to reverse the frequency-dependent smoothing of the data distribution induced by the diffusion process. We set up an operator learning task, based on frequency-aware building blocks, which satisfies semi-group properties, while exploiting the structure of time-series data. Evaluations on multiple datasets show that our single-step generation proposal achieves forecasting/imputation results comparable (or superior) to many multi-step diffusion schemes while significantly reducing inference costs.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 5649
Loading