Rethinking Symbolic Regression: Morphology and Adaptability in the Context of Evolutionary AlgorithmsDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Abstract: Symbolic Regression (SR) is the well-studied problem of finding closed-form analytical expressions that describe the relationship between variables in a measurement dataset. In this paper, we rethink SR from two perspectives: morphology and adaptability. Morphology: Current SR algorithms typically use several man-made heuristics to influence the morphology (or structure) of the expressions in the search space. These man-made heuristics may introduce unintentional bias and data leakage, especially with the relatively few equation-recovery benchmark problems available for evaluating SR approaches. To address this, we formulate a novel minimalistic approach, based on constructing a depth-aware mathematical language model trained on terminal walks of expression trees, as a replacement to these heuristics. Adaptability: Current SR algorithms tend to select expressions based on only a single fitness function (e.g., MSE on the training set). We promote the use of an adaptability framework in evolutionary SR which uses fitness functions that alternate across generations. This leads to robust expressions that perform well on the training set and are close to the true functional form. We demonstrate this by alternating fitness functions that quantify faithfulness to values (via MSE) and empirical derivatives (via a novel theoretically justified fitness metric coined MSEDI). Proof-of-concept: We combine these ideas into a minimalistic evolutionary SR algorithm that outperforms all benchmark and state of-the-art SR algorithms in problems with unknown constants added, which we claim are more reflective of SR performance for real-world applications. Our claim is then strengthened by reproducing the superior performance on real-world regression datasets from SRBench. For researchers interested in equation-recovery problems, we also propose a set of conventions that can be used to promote fairness in comparison across SR methods and to reduce unintentional bias.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
14 Replies