A Spectral Framework for Assessing the Geodesic Distance Between Graphs

ICLR 2025 Conference Submission12713 Authors

28 Sept 2024 (modified: 24 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Graph Theory, Graph Neural Network, Graph Laplacian, Riemannian Manifold, Geodesic, Graph Classification
Abstract: This paper presents a spectral framework for quantifying the differentiation between graph data samples by introducing a novel metric named Graph Geodesic Distance (GGD). For two different graphs with the same number of nodes, our framework leverages a spectral graph matching procedure to find node correspondence so that the geodesic distance between them can be subsequently computed by solving a generalized eigenvalue problem associated with their Laplacian matrices. For graphs of different sizes, a resistance-based spectral graph coarsening scheme is introduced to reduce the size of the larger graph while preserving the original spectral properties. We show that the proposed GGD metric can effectively quantify dissimilarities between two graphs by encapsulating their differences in key structural (spectral) properties, such as effective resistances between nodes, cuts, the mixing time of random walks, etc. Through extensive experiments comparing with the state-of-the-art metrics, such as the latest Tree-Mover's Distance (TMD) metric, the proposed GGD metric shows significantly improved performance for graph classification and stability evaluation of GNNs, especially when only partial node features are available.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12713
Loading