Topo Sampler: A Topology Constrained Noise Sampling for GANsDownload PDF

Oct 10, 2020 (edited Dec 02, 2020)NeurIPS 2020 Workshop TDA and Beyond Blind SubmissionReaders: Everyone
  • Keywords: Latent Space Topology, Persistent Homology, Disconnected Manifolds, Generative Adversarial Networks, Persistent Diagrams, Homeomorphism, Lipschitz Continuity
  • TL;DR: A Topology Constrained Method for learning Disconnected Manifold in GANs
  • Abstract: This work studies disconnected manifold learning in generative models in the light of point-set topology and persistent homology. Under this formalism, the topological similarity of latent space in generative models with the underlying manifold of data distribution facilitates better generalization. To achieve this, we introduce a topology-constrained noise sampler, responsible for mapping the samples from Gaussian spheres to a latent embedding space, which in turn is constrained to be topologically similar to the manifold underlying the data distribution. We study the effectiveness of this method in GANs for learning disconnected manifolds. This is ongoing research, with the current report containing preliminary empirical experiments.
  • Previous Submission: No
  • Poster: pdf
1 Reply

Loading