HALO: Hadamard-Assisted Lower-Precision Optimization for LLMs

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLMs, Quantization, Rotation, Fine-tuning, Full Fine-tuning, PEFT
TL;DR: A low-precision scheme for fine-tuning LLMs
Abstract: Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which can have large weight, activation, and error (output gradient) outlier values that make lower-precision optimization difficult. To address this, we present HALO, a new quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, which mitigate outliers, 2) high-performance kernel support, and 3) FSDP integration for low-precision communication. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLaMa models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.41x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. HALO efficiently supports both standard and parameter-efficient fine-tuning (PEFT). Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in INT8 and FP6 precision, while delivering performance benefits.
Supplementary Material: zip
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 8227
Loading