Geometry-Aware Approaches for Balancing Performance and Theoretical Guarantees in Linear Bandits

ICLR 2025 Conference Submission13487 Authors

28 Sept 2024 (modified: 23 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Linear bandit, Thompson sampling, Greedy, Data-driven exploration
Abstract: This paper is motivated by recent research in the $d$-dimensional stochastic linear bandit literature, which has revealed an unsettling discrepancy: algorithms like Thompson sampling and Greedy demonstrate promising empirical performance, yet this contrasts with their pessimistic theoretical regret bounds. The challenge arises from the fact that while these algorithms may perform poorly in certain problem instances, they generally excel in typical instances. To address this, we propose a new data-driven technique that tracks the geometric properties of the uncertainty ellipsoid around the main problem parameter. This methodology enables us to formulate a data-driven frequentist regret bound, which incorporates the geometric information, for a broad class of base algorithms, including Greedy, OFUL, and Thompson sampling. This result allows us to identify and ``course-correct" problem instances in which the base algorithms perform poorly. The course-corrected algorithms achieve the minimax optimal regret of order $\tilde{\mathcal{O}}(d\sqrt{T})$ for a $T$-period decision-making scenario, effectively maintaining the desirable attributes of the base algorithms, including their empirical efficacy. We present simulation results to validate our findings using synthetic and real data.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13487
Loading