Are LLMs Better than Reported? Detecting Label Errors and Mitigating Their Effect on Model Performance
Abstract: NLP benchmarks rely on standardized datasets for training and evaluating models and are crucial for advancing the field. Traditionally, expert annotations ensure high-quality labels; however, the cost of expert annotation does not scale well with the growing demand for larger datasets required by modern models.
While crowd-sourcing provides a more scalable solution, it often comes at the expense of annotation precision and consistency. Recent advancements in large language models (LLMs) offer new opportunities to enhance the annotation process, particularly for detecting label errors in existing datasets. In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples.
Through a case study of four datasets from the TRUE benchmark, covering different tasks, we empirically analyze the labeling quality of existing datasets and compare expert, crowd-sourced, and LLM-based annotations in terms of the agreement, label quality, and efficiency, demonstrating the strengths and limitations of each annotation method. Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance. This suggests that many of the LLMs' so-called mistakes are due to label errors rather than genuine model failures. Additionally, we discuss the implications of mislabeled data and propose methods to mitigate them in training to improve performance.
Paper Type: Long
Research Area: Resources and Evaluation
Research Area Keywords: NLP datasets, automatic evaluation of datasets, factuality, evaluation
Contribution Types: Data analysis
Languages Studied: English
Submission Number: 7130
Loading