First-Explore, then Exploit: Meta-Learning Intelligent Exploration

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Deep Reinforcement Learning, Deep RL, Exploration, Meta-learning, Meta-RL, Learning to Reinforcement Learn, RL^2
Abstract: Standard reinforcement learning (RL) agents never intelligently explore like a human (i.e. by taking into account complex domain priors and previous explorations). Even the most basic intelligent exploration strategies such as exhaustive search are only inefficiently or poorly approximated by approaches such as novelty search or intrinsic motivation, let alone more complicated strategies like learning new skills, climbing stairs, opening doors, or conducting experiments. This lack of intelligent exploration limits sample efficiency and prevents solving hard exploration domains. We argue a core barrier prohibiting many RL approaches from learning intelligent exploration is that the methods attempt to explore and exploit simultaneously, which harms both exploration and exploitation as the goals often conflict. We propose a novel meta-RL framework (First-Explore) with two policies: one policy learns to only explore and one policy learns to only exploit. Once trained, we can then explore with the explore policy, for as long as desired, and then exploit based on all the information gained during exploration. This approach avoids the conflict of trying to do both exploration and exploitation at once. We demonstrate that First-Explore can learn intelligent exploration strategies such as exhaustive search and more, and that it outperforms dominant standard RL and meta-RL approaches on domains where exploration requires sacrificing reward. Surprisingly and importantly, on such domains, First-Explore not only achieves higher final episode reward, it also achieves higher cumulative reward. First-Explore is a significant step towards creating meta-RL algorithms capable of learning human-level exploration, which is essential to solve challenging unseen hard-exploration domains.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7018
Loading