everyone
since 06 Jun 2024">EveryoneRevisionsBibTeXCC BY 4.0
The straight-through estimator (STE) is commonly used to optimize quantized neural networks, yet its contexts of effective performance are still unclear despite empirical successes. To make a step forward in this comprehension, we apply STE to a well-understood problem: sparse support recovery. We introduce the Support Exploration Algorithm (SEA), a novel algorithm promoting sparsity, and we analyze its performance in support recovery (a.k.a. model selection) problems. SEA explores more supports than the state-of-the-art, leading to superior performance in experiments, especially when the columns of $A$ are strongly coherent. The theoretical analysis considers recovery guarantees when the linear measurements matrix $A$ satisfies the Restricted Isometry Property (RIP). The sufficient conditions of recovery are comparable but more stringent than those of the state-of-the-art in sparse support recovery. Their significance lies mainly in their applicability to an instance of the STE.