Capturing Longitudinal Changes in Brain Morphology Using Temporally Parameterized Neural Displacement Fields.
Keywords: Longitudinal image registration, spatio-temporal regularization, monotonic regularization, implicit neural representations.
TL;DR: Capturing longitudinal changes in brain morphology using temporally parameterized neural displacement fields, while introducing a novel longitudinal regularization term that enforces monotonic rate of change over time.
Abstract: Longitudinal image registration enables studying temporal changes in brain morphology which is useful in applications where monitoring the growth or atrophy of specific structures is important. However this task is challenging due to; noise/artifacts in the data and quantifying small anatomical changes between sequential scans. We propose a novel longitudinal registration method that models structural changes using temporally parameterized neural displacement fields. Specifically, we implement an implicit neural representation (INR) using a multi-layer perceptron that serves as a continuous coordinate-based approximation of the deformation field at any time point. In effect, for any $N$ scans of a particular subject, our model takes as input a 3D spatial coordinate location $x, y, z$ and a corresponding temporal representation $t$ and learns to describe the continuous morphology of structures for both observed and unobserved points in time. Furthermore, we leverage the analytic derivatives of the INR to derive a new regularization function that enforces monotonic rate of change in the trajectory of the voxels, which is shown to provide more biologically plausible patterns. We demonstrate the effectiveness of our method on 4D brain MR registration. Our code is publicly available here https://github.com/aisha-lawal/inrmorph
Primary Subject Area: Image Registration
Secondary Subject Area: Image Registration
Paper Type: Methodological Development
Registration Requirement: Yes
Reproducibility: https://github.com/aisha-lawal/inrmorph
Visa & Travel: Yes
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 74
Loading