Keywords: Retrieval Augmented Generation, Large Language Modles
Abstract: Retrieval-augmented generation (RAG) addresses the limitation of large language models (LLMs) in achieving up-to-date information by integrating external knowledge sources, but it is hindered by noisy or irrelevant retrieved data, leading to reduced accuracy. Additionally, most RAG methods rely on task-specific supervision, reducing their adaptability across domains.
To overcome these challenges, we propose WinnowRAG, a novel multi-agent debate-based RAG framework. WinnowRAG operates in two stages: in Stage I, query-aware clustering groups similar documents, with each cluster assigned to an LLM agent for generating personalized responses. A critic LLM then consolidates these answers, forming super-agents. In Stage II, the super-agents engage in a structured discussion to filter out incorrect or irrelevant information, ensuring only relevant knowledge is used for final response generation. Crucially, WinnowRAG is unsupervised and leverages pretrained LLMs without requiring fine-tuning, making it easily adaptable to various tasks. The experiments on various realistic datasets demonstrate the effectiveness of WinnowRAG over state-of-the-art baselines.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12472
Loading