Keywords: Music Post Production, Fx Chain Generation, Tool Calling
TL;DR: LLM2Fx-Tools is a framework that uses a multimodal LLM to automatically generate executable audio effect chains (as tools), chain-of-thought reasoning, and natural language responses.
Abstract: This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine their order, and estimate parameters, guided by chain-of-thought (CoT) planning. We also present LP-Fx, a new instruction-following dataset with structured CoT annotations and tool calls for audio effects modules. Experiments show that LLM2Fx-Tools can infer an Fx-chain and its parameters from pairs of unprocessed and processed audio, enabled by autoregressive sequence modeling, tool calling, and CoT reasoning. We further validate the system in a style transfer setting, where audio effects information is transferred from a reference source and applied to new content. Finally, LLM-as-a-judge evaluation demonstrates that our approach generates appropriate CoT reasoning and responses for music production queries. To our knowledge, this is the first work to apply LLM-based tool calling to audio effects modules, enabling interpretable and controllable music production where users can incorporate their own audio plugins.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 16141
Loading