Keywords: Molecular Benchmark, Molecular Property Prediction
Abstract: Molecular representation learning is pivotal for various molecular property prediction tasks related to drug discovery. Robust and accurate benchmarks are essential for refining and validating current methods. Existing molecular property benchmarks derived from wet experiments, however, face limitations such as data volume constraints, unbalanced label distribution, and noisy labels. To address these issues, we construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules, meticulously designed to capture an extensive array of chemical, physical, and biological properties, derived through a robust computational ligand-target binding analysis pipeline. We conduct extensive experiments on various deep learning models, demonstrating that our dataset offers significant physicochemical interpretability to guide model development and design. Notably, the dataset's properties are linked to binding affinity metrics, providing additional insights into model performance in drug-target interaction tasks. We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning, thereby expediting progress in the field of artificial intelligence-driven drug discovery.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8614
Loading