Decentralized Blockchain-based Robust Multi-agent Multi-armed Bandit

24 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Online learning, Multi-agent Bandit, Blockchain
Abstract: We study a robust, i.e. in presence of malicious participants, multi-agent multi-armed bandit problem where multiple participants are distributed on a fully decentralized blockchain, with the possibility of some being malicious. The rewards of arms are homogeneous among the honest participants, following time-invariant stochastic distributions, which are revealed to the participants only when certain conditions are met to ensure that the coordination mechanism is secure enough. The coordination mechanism's objective is to efficiently ensure the cumulative rewards gained by the honest participants are maximized. To this end and to the best of our knowledge, we are the first to incorporate advanced techniques from blockchains, as well as novel mechanisms, into such a cooperative decision making framework to design optimal strategies for honest participants. This framework allows various malicious behaviors and the maintenance of security and participant privacy. More specifically, we select a pool of validators who communicate to all participants, design a new consensus mechanism based on digital signatures for these validators, invent a UCB-based strategy that requires less information from participants through secure multi-party computation, and design the chain-participant interaction and an incentive mechanism to encourage participants' participation. Notably, we are the first to prove the theoretical regret of the proposed algorithm and claim its optimality. Unlike existing work that integrates blockchains with learning problems such as federated learning which mainly focuses on optimality via computational experiments, we demonstrate that the regret of honest participants is upper bounded by $\log{T}$ under certain assumptions. The regret bound is consistent with the multi-agent multi-armed bandit problem without malicious participants and the robust multi-agent multi-armed bandit problem with purely Byzantine attacks which do not affect the entire system.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3839
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview