DeepGuiser: Learning to Disguise Neural Architectures for Impeding Adversarial Transfer AttacksDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Neural architecture extraction attack, neural architecture disguising, adversarial robustness, transferability predictor, policy learning
TL;DR: DeepGuiser is an automatic, hardware-agnostic, and retrain-free neural architecture disguising method to disguise the neural architectures, to resist possible adversarial attacks rendered by the model extraction attacks.
Abstract: Security is becoming increasingly critical in deep learning applications. Recent researches demonstrate that NN models are vulnerable to adversarial attacks, which can mislead them with only small input perturbations. Moreover, adversaries who know the architecture of victim models can conduct more effective attacks. Unfortunately, the architectural knowledge can usually be stolen by the adversaries by exploiting the system-level hints through many side channels, which is referred to as the neural architecture extraction attack. Conventional countermeasures for neural architecture extraction can introduce large overhead, and different hardware platforms have diverse types of side-channel leakages such that many expert efforts are needed in developing hardware-specific countermeasures. In this paper, we propose DeepGuiser, an automatic, hardware-agnostic, and retrain-free neural architecture disguising method, to disguise the neural architectures to reduce the harm of neural architecture extraction attacks. In a nutshell, given a trained model, DeepGuiser outputs a deploy model that is functionally equivalent with the trained model but with a different (i.e., disguising) architecture. DeepGuiser can minimize the harm of the follow-up adversarial transfer attacks to the deploy model, even if the disguising architecture is completely stolen by the architecture extraction attack. Experiments demonstrate that DeepGuiser can effectively disguise diverse architectures and impede the adversarial transferability by 13.87% ∼ 32.59%, while only introducing 10% ∼ 40% extra inference latency.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
12 Replies

Loading