Enhancing Graph Neural Networks: A Mutual Learning Approach

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: graph neural network, knowledge distillation, online deep mutual learning
TL;DR: This paper introduces a collaborative learning framework for graph neural networks (GNNs), enabling simple and shallow GNN architectures to synergistically learn and perform better during inference.
Abstract: Knowledge distillation (KD) techniques have emerged as a powerful tool for transferring expertise from complex teacher models to lightweight student models, particularly beneficial for deploying high-performance models in resource-constrained devices. This approach has been successfully applied to graph neural networks (GNNs), harnessing their expressive capabilities to generate node embeddings that capture structural and feature-related information. In this study, we depart from the conventional KD approach by exploring the potential of collaborative learning among GNNs. In the absence of a pre-trained teacher model, we show that relatively simple and shallow GNN architectures can synergetically learn efficient models capable of performing better during inference, particularly in tackling multiple tasks. We propose a collaborative learning framework where ensembles of student GNNs mutually teach each other throughout the training process. We introduce an adaptive logit weighting unit to facilitate efficient knowledge exchange among models and an entropy enhancement technique to improve mutual learning. These components dynamically empower the models to adapt their learning strategies during training, optimizing their performance for downstream tasks. Extensive experiments conducted on three datasets each for node and graph classification demonstrate the effectiveness of our approach.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7410
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview