Graph Representation Learning with Multi-granular Semantic Ensemble

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Graph Neural Networks, Graph Self-supervised Learning, Knowledge Distillation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: This work propose a graph self-supervised learning framework that leverages knowledge distillation and model ensemble techniques to facilitate comprehensive graph representation learning and enhance the model's generalization ability.
Abstract: Self-supervised learning (SSL) has garnered increasing attention in the graph learning community, owing to its capability of enabling powerful models pre-trained on large unlabeled graphs for general purposes, facilitating quick adaptation to specific domains. Though promising, existing graph SSL frameworks often struggle to capture both high-level abstract features and fine-grained features simultaneously, leading to sub-optimal generalization abilities across different downstream tasks. To bridge this gap, we present Multi-granularity Graph Semantic Ensemble via Knowledge Distillation, namely MGSE, a plug-and-play graph knowledge distillation framework that can be applied to any existing graph SSL framework to enhance its performance by incorporating the concept of multi-granularity. Specifically, MGSE captures multi-granular knowledge by employing multiple student models to learn from a single teacher model, conditioned by probability distributions with different granularities. We apply it to six state-of-the-art graph SSL frameworks and evaluate their performances over multiple graph datasets across different domains, the experimental results show that MGSE can consistently boost the performance of these existing graph SSL frameworks with up to 9.2\% improvement.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3937
Loading