A Training-Free Sub-quadratic Cost Transformer Model Serving Framework with Hierarchically Pruned Attention

ICLR 2025 Conference Submission1716 Authors

19 Sept 2024 (modified: 14 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Efficient Attention Mechanism, Long-context LLM Decoding, KV Cache Offloading
TL;DR: To response of quadratic scaling (time & GPU memory) problem of LLM decoding framework, we are proposing sub-quadratic time & GPU memory cost HiP attention.
Abstract: In modern large language models (LLMs), increasing the context length is crucial for improving comprehension and coherence in long-context, multi-modal, and retrieval-augmented language generation. While many recent transformer models attempt to extend their context length over a million tokens, they remain impractical due to the quadratic time and space complexities. Although recent works on linear and sparse attention mechanisms can achieve this goal, their real-world applicability is often limited by the need to re-train from scratch and significantly worse performance. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which reduces the time complexity of the attention mechanism to $O(T \log T)$ and the space complexity to $O(T)$, where $T$ is the sequence length. We notice a pattern in the attention scores of pretrained LLMs where tokens close together tend to have similar scores, which we call "attention locality". Based on this observation, we utilize a novel tree-search-like algorithm that estimates the top-$k$ key tokens for a given query on the fly, which is mathematically guaranteed to have better performance than random attention pruning. In addition to improving the time complexity of the attention mechanism, we further optimize GPU memory usage by implementing KV cache offloading, which stores only $O(\log T)$ tokens on the GPU while maintaining similar decoding throughput. Experiments on benchmarks show that HiP, with its training-free nature, significantly reduces both prefill and decoding latencies, as well as memory usage, while maintaining high-quality generation with minimal degradation. HiP enables pretrained LLMs to scale up to millions of tokens on commodity GPUs, potentially unlocking long-context LLM applications previously deemed infeasible.
Supplementary Material: zip
Primary Area: infrastructure, software libraries, hardware, systems, etc.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1716
Loading