Keywords: deepfake detection, fake song detection, synthetic song detection, efficient model, dataset, audio processing
TL;DR: We introduce SONICS, a large-scale dataset of end-to-end synthetic songs, propose SpecTTTra, an efficient model that captures long-range temporal patterns for effective fake song detection, and provide Human-AI benchmark for comprehensive analysis.
Abstract: The recent surge in AI-generated songs presents exciting possibilities and challenges. These innovations necessitate the ability to distinguish between human-composed and synthetic songs to safeguard artistic integrity and protect human musical artistry. Existing research and datasets in fake song detection only focus on singing voice deepfake detection (SVDD), where the vocals are AI-generated but the instrumental music is sourced from real songs. However, these approaches are inadequate for detecting contemporary end-to-end artificial songs where all components (vocals, music, lyrics, and style) could be AI-generated. Additionally, existing datasets lack music-lyrics diversity, long-duration songs, and open-access fake songs. To address these gaps, we introduce SONICS, a novel dataset for end-to-end Synthetic Song Detection (SSD), comprising over 97k songs (4,751 hours) with over 49k synthetic songs from popular platforms like Suno and Udio. Furthermore, we highlight the importance of modeling long-range temporal dependencies in songs for effective authenticity detection, an aspect entirely overlooked in existing methods. To utilize long-range patterns, we introduce SpecTTTra, a novel architecture that significantly improves time and memory efficiency over conventional CNN and Transformer-based models. For long songs, our top-performing variant outperforms ViT by 8% in F1 score, is 38% faster, and uses 26% less memory, while also surpassing ConvNeXt with a 1% F1 score gain, 20% speed boost, and 67% memory reduction.
Supplementary Material: zip
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 261
Loading