Random Feature Models with Learnable Activation Functions

27 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: learnable activation function, random features, interpretability, statistical learning theory
TL;DR: We study the random feature model with learnable activation functions, demonstrate its enhanced expressivity and interpretability and derive theoretical results of learning.
Abstract: Current random feature models typically rely on fixed activation functions, limiting their ability to capture diverse patterns in data. To address this, we introduce the Random Feature model with Learnable Activation Functions (RFLAF), a novel model that significantly enhances the expressivity and interpretability of traditional random feature (RF) models. We begin by studying the RF model with a single radial basis function, where we discover a new kernel and provide the first theoretical analysis on it. By integrating the basis functions with learnable weights, we show that RFLAF can represent a broad class of random feature models whose activation functions belong in $C_c(\mathbb{R})$. Theoretically, we prove that the model requires only about twice the parameter number compared to a traditional RF model to achieve the significant leap in expressivity. Experimentally, RFLAF demonstrates two key advantages: (1) it performs better across various tasks compared to traditional RF model with the same number of parameters, and (2) the optimized weights offer interpretability, as the learned activation function can be directly inferred from these weights. Our model paves the way for developing more expressive and interpretable frameworks within random feature models.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10607
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview