Predicting the Energy Landscape of Stochastic Dynamical System via Physics-informed Self-supervised Learning
Keywords: dynamical system, energy landscape, deep learning
TL;DR: We propose a self-supervised learning framework to predict the energy landscape of stochastic dynamical systems without supervisory signals for energy, while collaboratively achieving accurate energy estimation and evolution prediction.
Abstract: Energy landscapes play a crucial role in shaping dynamics of many real-world complex systems. System evolution is often modeled as particles moving on a landscape under the combined effect of energy-driven drift and noise-induced diffusion, where the energy governs the long-term motion of the particles.
Estimating the energy landscape of a system has been a longstanding interdisciplinary challenge, hindered by the high operational costs or the difficulty of obtaining supervisory signals. Therefore, the question of how to infer the energy landscape in the absence of true energy values is critical. In this paper, we propose a physics-informed self-supervised learning method to learn the energy landscape from the evolution trajectories of the system. It first maps the system state from the observation space to a discrete landscape space by an adaptive codebook, and then explicitly integrates energy into the graph neural Fokker-Planck equation, enabling the joint learning of energy estimation and evolution prediction. Experimental results across interdisciplinary systems demonstrate that our estimated energy has a correlation coefficient above 0.9 with the ground truth, and evolution prediction accuracy exceeds the baseline by an average of 17.65\%. The code is available at https://github.com/tsinghua-fib-lab/PESLA.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6929
Loading