Keywords: N:M structured sparsity, sparse DNN, sparse accelerators, model pruning
Abstract: Exploiting sparsity in deep neural networks (DNNs) has been a promising area for meeting the growing computation requirements. To minimize the overhead of sparse acceleration, hardware designers have proposed structured sparsity support, but it provides limited flexibility and requires extra model fine-tuning. Moreover, any sparse model fine-tuned for certain structured sparse HW cannot be accelerated by other structured hardware. To enable acceleration using unstructured sparsity of DNNs on structured sparse hardware, we propose an approximation method leveraging the distributive property in linear algebra to turn any sparse tensor into a series of structured
sparse tensors. We also develop a software framework, TASDER, to apply high-quality structured approximation on weights and activations of DNNs. Our method accelerates dense and sparse DNNs without fine-tuning and improves energy-delay-product (EDP) by up to 83% and 74%. It achieves up to 39% speed-up on a real system.
Submission Number: 144
Loading