Debiasing Mini-Batch Quadratics for Applications in Deep Learning

ICLR 2025 Conference Submission303 Authors

13 Sept 2024 (modified: 21 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: quadratic Taylor approximation, mini-batching, second-order optimizers, conjugate gradients, uncertainty quantification, Laplace approximation, stochastic curvature, GGN, KFAC
TL;DR: This paper shows that mini-batching introduces biases in quadratic approximations to deep learning loss functions, discusses their impact on second-order optimization and uncertainty quantification, and proposes debiasing strategies.
Abstract: Quadratic approximations form a fundamental building block of machine learning methods. E.g., second-order optimizers try to find the Newton step into the minimum of a local quadratic proxy to the objective function; and the second-order approximation of a network's loss function can be used to quantify the uncertainty of its outputs via the Laplace approximation. When computations on the entire training set are intractable - typical for deep learning - the relevant quantities are computed on mini-batches. This, however, distorts and biases the shape of the associated *stochastic* quadratic approximations in an intricate way with detrimental effects on applications. In this paper, we (i) show that this bias introduces a systematic error, (ii) provide a theoretical explanation for it, (iii) explain its relevance for second-order optimization and uncertainty quantification via the Laplace approximation in deep learning, and (iv) develop and evaluate debiasing strategies.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 303
Loading