Navigating Neural Space: Revisiting Concept Activation Vectors to Overcome Directional Divergence

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Explainable AI, Concept-based Explanations, Concept Activation Vectors
TL;DR: We introduce pattern-based CAVs, an alternative to widely used filter (e.g., SVM) CAVs, more robust to distractor patterns and thereby providing more accurate concept directions.
Abstract: With a growing interest in understanding neural network prediction strategies, Concept Activation Vectors (CAVs) have emerged as a popular tool for modeling human-understandable concepts in the latent space. Commonly, CAVs are computed by leveraging linear classifiers optimizing the *separability* of latent representations of samples with and without a given concept. However, in this paper we show that such a separability-oriented computation leads to solutions, which may diverge from the actual goal of precisely modeling the concept direction. This discrepancy can be attributed to the significant influence of distractor directions, i.e., signals unrelated to the concept, which are picked up by filters (i.e., weights) of linear models to optimize class-separability. To address this, we introduce *pattern-based CAVs*, solely focussing on concept signals, thereby providing more accurate concept directions. We evaluate various CAV methods in terms of their alignment with the true concept direction and their impact on CAV applications, including concept sensitivity testing and model correction for shortcut behavior caused by data artifacts. We demonstrate the benefits of pattern-based CAVs using the Pediatric Bone Age, ISIC2019, and FunnyBirds datasets with VGG, ResNet, ReXNet, EfficientNet, and Vision Transformer as model architectures.
Supplementary Material: zip
Primary Area: interpretability and explainable AI
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1856
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview