Submission Type: Long
Keywords: Prompt Engineering, Large Language Models, Length Control and Fidelity, LLM-as-a-Judge
Abstract: Length control in Large Language Models (LLMs) is a crucial but under-addressed challenge, with applications ranging from voice interfaces requiring concise responses to research summaries needing comprehensive outputs. Current approaches to length control, including Regularized DPO, Length-Instruction Fine-Tuning, and tool-augmented methods, typically require expensive model retraining or complex inference-time tooling. This paper presents a prompt engineering methodology that enables precise length control without model retraining. Our structure-guided approach implements deliberate planning and word counting mechanisms within the prompt, encouraging the model to carefully track and adhere to specified length constraints. Comprehensive evaluations across six state-of-the-art LLMs demonstrate that our method significantly improves length fidelity for several models compared to standard prompting when applied to document summarization tasks, particularly for shorter-to-medium length constraints. The proposed technique shows varying benefits across different model architectures, with some models demonstrating up to 37.6\% improvement in length adherence. Quality evaluations further reveal that our approach maintains or enhances overall output quality compared to standard prompting techniques. Our approach provides an immediately deployable solution for applications requiring precise length control, particularly valuable for production environments where model retraining is impractical or cost-prohibitive.
Submission Number: 28
Loading