Keywords: LLM-as-a-Judge, bias
Abstract: LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To bridge this gap, we propose BiasScope, a LLM-driven framework for automatically and at scale discovering potential biases that may arise during model evaluation. BiasScope can uncover potential biases across different model families and scales, with its generality and effectiveness validated on the JudgeBench dataset. Moreover, based on BiasScope, we propose JudgeBench-Pro, an extended version of JudgeBench and a more challenging benchmark for evaluating the robustness of LLM-as-a-judge. Strikingly, even powerful LLMs as evaluators show error rates above 50% on JudgeBench-Pro, underscoring the urgent need to strengthen evaluation robustness and to mitigate potential biases further.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 18917
Loading