Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space

ICLR 2026 Conference Submission20131 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Semantic Navigation, Natural Language Processing, Human Cognition, Text Embeddings
TL;DR: We propose a natural language-based characterization of human semantic navigation in concept production as trajectories in embedding space through metrics to classify groups and concepts
Abstract: Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories and extract geometric and dynamical metrics—including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Critically, different embedding models were essentially similar in describing these differences, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 20131
Loading