Implications for human odor sensing revealed from the statistics of odorant-receptor interactions.Download PDFOpen Website

2018 (modified: 09 Nov 2022)PLoS Computational Biology2018Readers: Everyone
Abstract: Author summary Despite the decades of research, quantitative details of human olfaction have remained largely unexplored. However, a high-throughput measurement has recently been carried out to produce dose-response data between a set of odorants and a repertoire of human olfactory receptors. We characterized each pair of odorant-receptor interaction in terms of EC50, efficacy, and basal level, a strategy often adopted in biochemical, pharmacological sciences to describe the response of receptors to cognate ligands. The distributions of EC50 values and efficacies acquired from the analysis provide glimpses into how human olfactory receptors are tuned to odorants. Specifically, the response of human ORs is optimized around ∼ 100μM of odorant. Next, the efficacies of OR responses to odorants are bi-exponentially distributed, which indicates that the strength of odorant-OR interaction is classified into strong and weak subgroups. By showing that the stochastic response of individual receptor to odorant can effectively be binarized at cellular level through olfactory processes, we also provide a theoretical basis for an information theoretical approach in studying the principles of odor perception.
0 Replies

Loading