Coresets from Trajectories: Selecting Data via Correlation of Loss Differences

TMLR Paper5687 Authors

20 Aug 2025 (modified: 26 Aug 2025)Under review for TMLREveryoneRevisionsBibTeXCC BY 4.0
Abstract: Deep learning models achieve state-of-the-art performance across domains but face scalability challenges in real-time or resource-constrained scenarios. To address this, we propose Correlation of Loss Differences ($\mathtt{CLD}$), a simple and scalable metric for coreset selection that identifies the most impactful training samples by measuring their alignment with the loss trajectories of a held-out validation set. $\mathtt{CLD}$ is highly efficient, requiring only per-sample loss values computed at training checkpoints, and avoiding the costly gradient and curvature computations used in many existing subset selection methods. We develop a general theoretical framework that establishes convergence guarantees for $\mathtt{CLD}$-based coresets, demonstrating that the convergence error is upper-bounded by the alignment of the selected samples and the representativeness of the validation set. On CIFAR-100 and ImageNet-1k, $\mathtt{CLD}$-based coresets typically outperform or closely match state-of-the-art methods across subset sizes, and remain within 1\% of more computationally expensive baselines even when not leading. $\mathtt{CLD}$ transfers effectively across architectures (ResNet, VGG, DenseNet), enabling proxy-to-target selection with $<1\%$ degradation. Moreover, $\mathtt{CLD}$ is stable when using only early checkpoints, incurring negligible accuracy loss. Finally, $\mathtt{CLD}$ exhibits inherent bias reduction via per-class validation alignment, obviating the need for additional stratified sampling. Together, these properties make $\mathtt{CLD}$ a principled, efficient, stable, and transferable tool for scalable dataset optimization.
Submission Length: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Mingrui_Liu2
Submission Number: 5687
Loading