Scalable and Effective Implicit Graph Neural Networks on Large Graphs

Published: 16 Jan 2024, Last Modified: 18 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: graph neural networks, implicit graph neural networks, implicit models, graph learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Graph Neural Networks (GNNs) have become the de facto standard for modeling graph-structured data in various applications. Among them, implicit GNNs have shown a superior ability to effectively capture long-range dependencies in underlying graphs. However, implicit GNNs tend to be computationally expensive and have high memory usage, due to 1) their use of full-batch training; and 2) they require a large number of iterations to solve a fixed-point equation. These compromise the scalability and efficiency of implicit GNNs especially on large graphs. In this paper, we aim to answer the question: how can we efficiently train implicit GNNs to provide effective predictions on large graphs? We propose a new scalable and effective implicit GNN (SEIGNN) with a mini-batch training method and a stochastic solver, which can be trained efficiently on large graphs. Specifically, SEIGNN can more effectively incorporate global and long-range information by introducing coarse-level nodes in the mini-batch training method. It also achieves reduced training time by obtaining unbiased approximate solutions with fewer iterations in the proposed solver. Comprehensive experiments on various large graphs demonstrate that SEIGNN outperforms baselines and achieves higher accuracy with less training time compared with existing implicit GNNs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning on graphs and other geometries & topologies
Submission Number: 5011
Loading