Keywords: reward modeling, meta-evaluation, llm-as-a-judge
TL;DR: We observe three key behaviors in automated evaluators: 1) evaluation skills transfer across language, 2) notable shortcomings in penalizing factual errors, and 3) difficulties with judging complex prompts.
Abstract: LLM-as-a-Judge and reward models are widely used alternatives of multiple-choice questions or human annotators for large language model (LLM) evaluation. Their efficacy shines in evaluating long-form responses, serving a critical role as evaluators of leaderboards and as proxies to align LLMs via reinforcement learning. However, despite their popularity, their effectiveness in diverse contexts, such as non-English prompts, factual verification, or challenging questions, remains unexplored. In this paper, we conduct a comprehensive analysis of automated evaluators, reporting several key findings on their behavior. First, we discover that English evaluation capabilities significantly influence language-specific evaluation capabilities, often more than the language proficiency itself, enabling evaluators trained in English to easily transfer their skills to other languages. Second, we identify critical shortcomings, where LLMs fail to detect and penalize errors, such as factual inaccuracies, cultural misrepresentations, and the presence of unwanted language. Finally, we find that state-of-the-art evaluators struggle with challenging prompts, in either English or Korean, underscoring their limitations in assessing or generating complex reasoning questions. We release the dataset and codes used.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8660
Loading