Keywords: Video generation, Diffusion model
Abstract: Generating high-quality videos from complex temporal descriptions, which refer to prompts containing multiple sequential actions, remains a significant challenge. Existing methods are constrained by an inherent trade-off: using multiple short prompts fed sequentially into the model improves action fidelity but compromises temporal consistency, while a single complex prompt preserves consistency at the cost of prompt following capability. We attribute this problem to two primary causes: temporal misalignment between video content and the prompt, and conflicting attention coupling between motion-related visual objects and their associated text conditions. To address these challenges, we propose a novel, training-free attention mechanism, Temporal-wise Separable Attention (TS-Attn), which dynamically rearranges attention distribution to ensure temporal awareness and global coherence in multi-event scenarios. TS-Attn can be seamlessly integrated into various pre-trained text-to-video models, boosting StoryEval-Bench scores by 33.5% and 16.4% on Wan2.1-T2V-14B and Wan2.2-T2V-A14B with only a 2% increase in inference time. It also supports plug-and-play usage across models for multi-event image-to-video generation. The source code and video demos are available in the supplementary materials.
Supplementary Material: zip
Primary Area: generative models
Submission Number: 1323
Loading