Keywords: Large Language Model, Vision-Language Model, Rotary Positional Embedding (RoPE)
Abstract: Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to vision-language models (VLMs), RoPE and its variants enforce relative positional dependencies separately within text and image tokens, introducing unintended cross-modal positional biases. For example, image tokens depicting semantically consistent content are assigned distinct positional encodings solely due to spatial location variations. As a result, such tokens exhibit entirely different relative positional relationships with their corresponding text tokens, ultimately leading to misaligned cross-modal representations.
To address this, we propose Per-Token Distance, a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme designed to eliminate spurious cross-modal biases.
Our key idea is to project image token indices onto a *ring* that is orthogonal to the linear axis of text token indices, thereby forming a cone-like structure in the positional encoding space. In this configuration, each text token (point on the linear text axis) becomes the apex of a cone and maintains an equal distance to all image tokens (points on the circular image *ring*), reducing artificial cross-modal biases while preserving intra-image spatial information.
To further enhance performance, we propose a staggered strategy that applies different RoPE variants across layers. Extensive experiments demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for VLMs.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 16412
Loading